Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 134075, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508114

RESUMO

Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.


Assuntos
Bacillus , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro/química , Halogenação , Halogênios , Desinfecção , Flavobacterium , Cloraminas/química
2.
Water Res ; 232: 119689, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739658

RESUMO

Chloramination and chlorination are both strong barriers that prevent the transmission of potential pathogens to humans through drinking water. However, the comparative effects of chloramination and chlorination on the occurrence of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) remain unknown. Herein, the antibiotic resistome in water before and after chloramination or chlorination was analyzed through metagenomic sequencing and then verified through quantitative real-time polymerase chain reaction (qPCR). After the treatment of 90 min, chloramination led to higher enrichment of the total relative abundance of intracellular ARGs (iARGs) in water than chlorination, whereas chlorination facilitated the release of more extracellular ARGs (eARGs) than chloramination. According to redundancy and Pearson's analyses, the total concentration of the observed iARGs in the finished water exhibited a strong positive correlation with ammonium nitrogen (NH4+-N) concentration, presenting a linear upward trend with an increase in the NH4+-N concentration. This indicated that NH4+-N is a crucial driving factor for iARG accumulation during chloramination. iARG enrichment ceases if the duration of chloramination is shortened to 40 min, suggesting that shortening the duration would be a better strategy for controlling iARG enrichment in drinking water. These findings emphasized the potential risk of antibiotic resistance after extended chloramination, shedding light on the control of transmission of antibiotic-resistant bacteria through water by optimizing disinfection procedures in DWTPs.


Assuntos
Água Potável , Purificação da Água , Humanos , Antibacterianos/farmacologia , Água Potável/análise , Resistência Microbiana a Medicamentos/genética , Purificação da Água/métodos , Bactérias/genética , Desinfecção/métodos , Genes Bacterianos
3.
Environ Pollut ; 307: 119541, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623567

RESUMO

Antibiotic resistance genes (ARGs), especially last-resort ARGs (LARGs), are receiving extensive attention as emerging environmental contaminants in groundwater. However, their prevalent intracellular and extracellular patterns and bacterial sources in groundwater remain unclear. Herein, groundwater samples were collected in Tianjin, and characterized based on the profiles of intracellular ARGs (iARGs) and extracellular ARGs (eARGs), as well as the resident bacterial communities and extracellular DNA (eDNA)-releasing bacterial communities. The quantitative real-time PCR assays showed that eARGs presented fewer subtypes than iARGs and generally displayed lower detection frequencies than the corresponding iARGs. Similarly, LARGs exhibited lower detection frequencies than common ARGs, but the total abundance showed no significant differences between them. Genes vanA and blaVIM were the observed dominant LARGs, and aadA was the observed common ARG independent of location inside or outside the bacteria. Furthermore, the top 10 phyla showed much difference between the main eDNA-releasing bacteria and the dominant resident bacteria. Proteobacteria was the predominant resident bacterial phyla while dominating the source of eDNA in groundwater. Despite representing a minor portion of the abundance in the resident bacteria, Actinobacteriota, Acidobacteriota, and Chloroflex surprisingly accounted for a large majority of eDNA release. Co-occurrence patterns among persistent ARGs, the resident bacteria, and eDNA-releasing bacteria revealed that the dominant common iARG aadA and intracellular LARGs blaVIM and vanA had significant positive correlations with Methylobacterium_Methylorubrum and Shewanella. Meanwhile, the dominant extracellular LARG blaVIM may be released by bacteria belonging to at least five genera, including Ellin6067, Bifidobacterium, Blautia, Veillonella, and Dechloromonas. Collectively, the findings of this study extend our understanding regarding the distribution of ARGs and their bacterial sources in groundwater, and indicate the serious pollution of LARGs in groundwater, which poses potential risks to public health.


Assuntos
Antibacterianos , Água Subterrânea , Antibacterianos/farmacologia , Bactérias/genética , DNA , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
4.
J Hazard Mater ; 425: 127942, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34902725

RESUMO

Antibiotic resistance genes (ARGs) are receiving increasing concerns due to the antibiotic resistance crisis. Nevertheless, little is known about the spatial behavior and sources of extracellular ARGs (eARGs) in the chlorinated drinking water distribution systems (DWDSs). Here, tap water was continuously collected to reveal the occurrence of both eARGs and intracellular ARGs (iARGs) along a chlorinated DWDS. Afterward, the correlation between eARGs, eDNA-releasing communities, and communities of planktonic bacteria was further analyzed. The eARG concentration decreased significantly, whereas the proportion of vanA and blaNDM-1 increased. Further, the diversity of the eDNA-releasing community increased markedly with increasing distance from the drinking water treatment plant (DWTP). Moreover, the dominant eDNA-releasing bacteria shifted from Acinetobacter, Pseudomonas, and Methylobacterium-Methylorubrum in finished water from the DWTP to Bacteroides, Faecalibacterium, Staphylococcus, and Parabacteroides in the DWDS. In terms of eARG source, thirty genera were significantly correlated with seven types of eARGs that resulted from the lysis of dead planktonic bacteria and detached biofilms. Conversely, the iARGs concentration increased, whereas the biodiversity of the planktonic bacteria community decreased in the sampling points along the DWDSs. Our findings provide critical insights into the spatial behavior and sources of eARGs, highlighting the health risks associated with ARGs in DWDSs.


Assuntos
Água Potável , Purificação da Água , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Comportamento Espacial , Águas Residuárias
5.
Huan Jing Ke Xue ; 42(4): 1939-1945, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742829

RESUMO

In order to study the effects of chlorine dioxide (ClO2) disinfection on the super antibiotic resistance genes (SARGs), the final effluents before and after chlorine dioxide were sampled throughout one year in a wastewater treatment plant (WWTP). The bacteria and extracellular nucleic acid were collected using microporous membrane filtration and nucleic acid adsorption particles, respectively. A total of 9 SARGs was detected through a quantitative real-time polymerase chain reaction (qPCR). The results revealed that both intracellular and extracellular NDM-1, MCR-1, and MEC-A could be positively detected in the samples. Overall, ClO2 disinfection enhanced the relative abundance of the iSARGs (P<0.05), exhibiting a seasonal pattern, and increasing in the spring, summer, and autumn. In spring, it improved the most, up to twice the abundance. No SARGs were detected positive in the winter, either intracellularly or extracellularly. There was no significant variation in the concentrations of eSARGs before and after ClO2 disinfection. Therefore, ClO2 disinfection cannot effectively remove iSARGs and eSARGs in the final effluent from the WWTP.


Assuntos
Compostos Clorados , Desinfetantes , Purificação da Água , Antibacterianos/farmacologia , Cloro , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção , Resistência Microbiana a Medicamentos/genética , Óxidos/farmacologia
6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(6): 668-672, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33719279

RESUMO

Objective: To establish a high performance liquid chromatography tandem mass spectrometry (HPLC / MS) method for the simultaneous determination of three antidepressant drugs in feces. Methods: Samples were pretreated with n-hexane isopropanol (95:5, v/v). Gradient elution was carried out with mixed liquid of ultrapure water and acetonitrile as mobile phase and separated by Agilent ZORBAX SB-C18 liquid chromatography column (2.1 mm×100 mm, 3.5 m). The samples were detected by electrospray ionization tandem mass spectrometry and quantified by internal standard method. Results: The recoveries of duloxetine, fluoxetine and escitalopram in fecal samples were 61.6% - 116.5%, with precision of 2.80% - 12.9% (n=5). The correlation coefficients (r) of linear equations were all greater than 0.995. The detection limits were 0.1, 1, and 0.001 µg/g, and the limits of quantification were 0.5, 2 and 0.005 µg/g, respectively. Conclusion: The method is simple and accurate to detect the contents of three antidepressants in feces, such as duloxetine, fluoxetine and escitalopram.


Assuntos
Citalopram , Espectrometria de Massas em Tandem , Antidepressivos , Cromatografia Líquida de Alta Pressão , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...